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Introduction 
The laws of motion first introduced by Sir Issac Newton in the late 1600s have proven to model systems 

in our universe with impeccable accuracy. However, in several cases, classical physics has failed to 

effectively model systems on an extremely small scale. The introduction of Quantum Mechanics works 

to fill the void where classical physics breaks down, effectively modelling quantum systems that cannot 

be modelled by Newton’s laws of motion. One such system is the quantum harmonic oscillator. The 

quantum harmonic oscillator can be thought of classically as a simple harmonic oscillator, such as a 

mass-spring system. Only in the quantum case, one takes the mass in question to be extremely small, 

such as an oscillating particle or diatomic molecule. When comparing the classical model of the 

quantum oscillator to the quantum model, it is noticed that the two systems behave in different ways. 

This is particularly evident when looking at the position probability distributions at low energy states. 

Figure 1 below shows the probability distribution of an oscillating particle in the ground state as 

modelled by both quantum and classical mechanics. Notably, the quantum model predicts that the 

particle is most likely found at the classical equilibrium point, when the position is equal to zero. 

However, the classical model predicts the exact opposite, that the particle is most likely found far from 

equilibrium at the point when its position is equal to the amplitude of oscillation. This discrepancy 

suggests a concerning reality; both classical mechanics and quantum mechanics have proven to be 

extremely effective at modelling systems in their respective fields, however, the two models do not 

agree. In order to understand whether this discrepancy is of concern, the two models must be explored 

as the amplitude of oscillations increases. This brings to light the question; at large amplitudes, does the 

behaviour of the quantum harmonic oscillator approach the classical behaviour? 

 

Figure 1: The quantum position probability distribution as compared to the classical probability distribution for the ground state 
of the quantum harmonic oscillator. Note that the two distributions predict significantly different behaviours of the particle. The 

code used to generate these plots can be found in Appendix A.   

This paper explores the limit of the quantum harmonic oscillator, and inevitably concludes that the 

position probability distribution of the quantum harmonic oscillator approaches the classical behaviour 

at large values of the quantum number n. In order to determine this correspondence, the probability 

distributions for both the quantum and classical systems were calculated. In quantum mechanics, the 

position probability distribution of an oscillating particle can be found by taking the wave function 

squared. As the solutions to the Schrödinger equation can be found analytically using the set of Hermite 

polynomials, one can calculate the probability distributions for different values of n. For the classical 



model, the probability can be calculated by looking at an infinitely small position “dx”. If the time that 

the particle spends in that position is an infinitely small time step “dt”, then the probability of finding 

the particle in the position “dx” is simply dt divided by the total period of oscillation. Integrating over the 

entire period and normalizing gives an equation for the probability of finding the particle at any arbitrary 

point “x”. However, its is found that the quantum probability relies on the quantum number “n” while 

the classical probability relies on the amplitude of oscillation, and as such, there is no necessarily 

obvious way of comparing these two distributions. This gives rise to the intermittent question; for the 

quantum oscillator, how is amplitude defined? With further algebraic manipulation, it can be found that, 

both the classical distribution and quantum distribution rely on the energy En of the particle. Regardless 

of the model, it is understood that the energy of a particle is the same, and as such, both systems 

consequently rely on the quantum number, “n”. Thus, for the purpose of this study, this paper proposes 

that the quantum amplitude is in fact the quantum number “n”. This allows both equations to be 

written in terms of n. Further, this allows for the position probability distribution plots to be generated, 

for both the classical and quantum oscillator, at increasing values of n. Plots were generated for n values 

from 0 to 150. For the n = 150 distribution, it was found that the two systems agreed to an error of 

1.75%. Comparably to the error at the ground state of 21.21%, it can be concluded that the quantum 

harmonic oscillator approaches the classical behaviour for large quantum amplitudes.  

   



Model and Method of Approach 
In working to generate probability distribution plots, the first objective is to determine the mathematical 

equations that govern these distributions.  This section explores the mathematics in determining the 

probability distributions for both the quantum and classical distributions, as well as outlines how the 

proposed quantum amplitude n allows us to compare the two systems.  

Quantum Probability Distribution  
In quantum mechanics, the probability distribution can be found by taking the wave function squared. 

As such, the wavefunction of the quantum harmonic oscillator must be determined first. This can be 

done by finding the solutions to the Schrödinger equation. The time independent Schrödinger equation 

is given by equation 1 below:  

−ℏ2

2𝑚

𝑑2Ψ(𝑥)

𝑑𝑥2 + 𝑈(𝑥)Ψ(𝑥) = 𝐸Ψ(𝑥)        (1)  

The Hamiltonian for the simple harmonic oscillator can be expressed as:  

𝐻 =
𝑝2

2𝑚
+

1

2
𝑘𝑥2  

Noting that the potential energy of the oscillator is found in the second term of the Hamiltonian, it is 

found that:  

𝑈(𝑥) =
1

2
𝑘𝑥2  

Expressing k in terms of the frequency, we have that:  

𝜔 = √
𝑘

𝑚
→ 𝑘 =  𝜔2𝑚   

𝑈(𝑥) =
1

2
𝜔2𝑚𝑥2          (2) 

Subbing equation (2) into equation (1), we have the time dependant Schrödinger equation for the 

quantum harmonic oscillator: 

−ℏ2

2𝑚

𝑑2Ψ(𝑥)

𝑑𝑥2 +
1

2
𝑚𝜔2𝑥2Ψ(𝑥) = 𝐸Ψ(𝑥)  

Rearranging, we have:  

−ℏ2

2𝑚

𝑑2Ψ(𝑥)

𝑑𝑥2 +
1

2
𝑚𝜔2𝑥2Ψ(𝑥) − 𝐸Ψ(𝑥) = 0  

Isolating the differential terms: 

𝑑2Ψ

𝑑𝑥2 +
𝜔2𝑥2Ψ

−ℏ2 +
2𝑚𝐸Ψ

ℏ2 = 0  

𝑑2Ψ

𝑑𝑥2 + (
2𝑚𝐸

ℏ2 −
𝑚2𝜔2

ℏ2 𝑥2) Ψ = 0          (3) 

Equation (3) is a second order differential equation that can be solved using a power series. Notably, 

there are other methods to solve this equation, however, as we are looking for the full set of solutions, 

the power series method seems logical.  



To simplify the algebra, first the following change of variables can be made:  

𝑦 =  √
𝑚𝜔

ℏ
𝑥 

Substituting into the differential equation shown in equation (3), we have:  

𝑑2Ψ(𝑦)

𝑑𝑦2 + (
2𝐸

ℏ𝜔
− 𝑦2) Ψ(𝑦) = 0          (4) 

Note that for extremely large values of y, the y2 term will dominate over the 
2𝐸

ℏ𝜔
 term. As such, the ansatz 

can be made that the general solution to the differential equation will take the form:  

Ψ(𝑦) = 𝑢(𝑦)𝑒
−(

𝑦2

2
)
           (5) 

Calculating the first derivative by the chain rule:  

𝑑Ψ

𝑑𝑦
=

𝑑𝑢

𝑑𝑦
𝑒

−(
𝑦2

2
)

− 𝑢(𝑦)𝑦𝑒
−(

𝑦2

2
)
           

Calculating the second derivative:  

𝑑2Ψ(𝑦)

𝑑𝑦2 =
𝑑2𝑢

𝑑𝑦2 𝑒
−(

𝑦2

2
)

− 2 (𝑦
𝑑𝑢

𝑑𝑦
𝑒

−(
𝑦2

2
)
) + 𝑢(𝑦)(𝑦2 − 1)𝑒

−(
𝑦2

2
)
      (6) 

Subbing equations (5) and (6) into equation (4), we have:  

[
𝑑2𝑢

𝑑𝑦2 𝑒
−(

𝑦2

2
)

− 2 (𝑦
𝑑𝑢

𝑑𝑦
𝑒

−(
𝑦2

2
)
) + 𝑢(𝑦)(𝑦2 − 1)𝑒

−(
𝑦2

2
)
] + (

2𝐸

ℏ𝜔
− 𝑦2) 𝑢(𝑦)𝑒

−(
𝑦2

2
)

= 0  

Cancelling terms and dividing through by 𝑒
−(

𝑦2

2
)
, we have:  

𝑑2𝑢

𝑑𝑦2 − 2𝑦
𝑑𝑢

𝑑𝑦
+ (

2𝐸

ℏ𝜔
− 1) 𝑢(𝑦) = 0         (7) 

Equation (7) now represents the time dependant Schrödinger equation in terms of the changed variable 

y. To solve this second order differential equation, we can use the power series method, making the 

ansatz that:  

𝑢(𝑦) = ∑ 𝑎𝑛𝑦𝑛∞
0            (8) 

Taking the first derivative:  

𝑑𝑢

𝑑𝑦
= ∑ 𝑛𝑎𝑛𝑦𝑛−1∞

0           (9) 

And the second derivative:  

𝑑2𝑢

𝑑𝑦2 = ∑ 𝑛(𝑛 − 1)𝑎𝑛𝑦𝑛−2∞
0 = ∑ (𝑛 + 1)(𝑛 + 2)𝑎𝑛+2𝑦𝑛∞

0      (10) 

Subbing equations (8), (9) and (10) into equation (7):  



∑(𝑛 + 1)(𝑛 + 2)𝑎𝑛+2𝑦𝑛

∞

0

− 2𝑦 ∑ 𝑛𝑎𝑛𝑦𝑛−1

∞

0

+ (
2𝐸

ℏ𝜔
− 1) ∑ 𝑎𝑛𝑦𝑛

∞

0

= 0 

Simplifying:  

∑ [(𝑛 + 1)(𝑛 + 2)𝑎𝑛+2 − (
2𝐸

ℏ𝜔
− 1 − 2𝑛) 𝑎𝑛 ] 𝑦2𝑛 = 0

∞

0

 

Thus, the recursion relation can be defined as:  

𝑎𝑛+2 =
2𝑛+1−

2𝐸

ℏ𝜔

(𝑛+2)(𝑛+1)
𝑎𝑛          (11) 

Equation (11) defines that series representation of all the expansion coefficients for the solution to 

equation (7). In order to represent the series in closed form, we can set the numerator of equation (11) 

to zero in order to solve for the energy in terms of n:  

2𝑛 + 1 −
2𝐸

ℏ𝜔
= 0 

𝐸 = (𝑛 +
1

2
) ℏ𝜔          (12) 

Equation (12) represents the set of energies for each quantum number n. Although the power series 

solution is not in closed form, with further manipulation beyond the scope of this course, a closed 

solution can be found by incorporating Hermite Polynomials. The Hermite Polynomials are a set of 

orthogonal polynomials that are closely related to the recursion relation defined in equation (11) [1]. 

Applying these polynomials, the general solutions to equation (13) can be written as:  

Ψ(𝑦) = (
𝑦2

𝑥2𝜋
)

1
4 1

√2𝑛𝑛!
𝐻𝑛(𝑦)𝑒

−(
𝑦2

2
)
 

Taking into consideration our change of variables, we have the general formula for the normalized wave 

function of the quantum harmonic oscillator to be:  

Ψ(𝑥) = (
𝑚𝜔

ℏ𝜋
)

1

4 1

√2𝑛𝑛!
𝐻𝑛 (√

𝑚𝜔

ℏ
𝑥) 𝑒

−(
𝑚𝜔

2ℏ
𝑥2)

       (13) 

Further, the probability distribution can be found by taking the wavefunction squared:  

𝑃𝑞(𝑥) = |Ψ(𝑥)|2     𝑠. 𝑡.      Ψ(𝑥) = (
𝑚𝜔

ℏ𝜋
)

1

4 1

√2𝑛𝑛!
𝐻𝑛 (√

𝑚𝜔

ℏ
𝑥) 𝑒

−(
𝑚𝜔

2ℏ
𝑥2)

     (14) 

Equation (14) represents the position probability distribution for the quantum harmonic oscillator, 

dependant on the quantum number n.  

Classical Probability Distribution 
Deriving the probability distribution for the classical harmonic oscillator requires a more creative 

strategy. First, we propose analyzing the probability of finding the particle in an infinitesimally small 

range between an arbitrary value “x” and a step “dx”.  



𝑃(𝑥)𝑑𝑥 = 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑓𝑖𝑛𝑑𝑖𝑛𝑔 𝑎 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑥 𝑎𝑛𝑑 𝑥 + 𝑑𝑥 

For a simple harmonic oscillator, the period is given by:  

𝑇 =
2𝜋

𝜔
 

Consequently, it follows that the probability of finding a particle between x and x + dx would simply be 

the amount of time that the particle spends in the range, divided by the total period of oscillation. 

Letting “dt” be the amount of time the particle spends in the range x + dx, we have:  

𝑃(𝑥)𝑑𝑥 =
𝑑𝑡

𝑇
            (15) 

Note that the time step, “dt”, is related to the velocity “v” such that:  

𝑣 =
𝑑𝑥

𝑑𝑡
   

It follows that:  

𝑑𝑡 =
𝑑𝑥

𝑣
            (16) 

Subbing equation (16) into equation (15), and applying the formula for period we have:  

𝑃(𝑥)𝑑𝑥 =
𝑑𝑥

𝑣𝑇
=

𝜔

2𝜋𝑣
𝑑𝑥           (17) 

Under classical mechanics, energy must be conserved. The total energy of a classical harmonic oscillator 

is given by:  

𝐸 =
1

2
𝑚𝑣(𝑡)2 +

1

2
𝑚𝜔2𝑥(𝑡)2         (18) 

Rearranging for velocity, we have:  

𝑣(𝑡) = √
2𝐸

𝑚
− 𝜔2𝑥(𝑡)2          (19) 

Recall that the position in time of a harmonic oscillator as described by classical mechanics is:  

𝑥(𝑡) =  𝐴𝑠𝑖𝑛(𝜔𝑡 + 𝜙),        𝑠. 𝑡.   𝜔 = 𝑛𝑎𝑡𝑢𝑟𝑎𝑙 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦, 𝐴 = 𝑎𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒, 𝜙 = 𝑝ℎ𝑎𝑠𝑒      

Taking 𝜙 to be equal to -
𝜋

2
 to simplify the manipulation, we have that:  

𝑥(𝑡) =  𝐴𝑠𝑖𝑛(𝜔𝑡)               (20) 

Subbing equation (20) into equation (19), we have that:  

𝑣(𝑡) =  √
2𝐸

𝑚
− 𝜔2𝐴2 sin2(𝜔𝑡)         (21) 

Note that the Amplitude, A, of a harmonic oscillator is given by: 

𝐴 =  √
2𝐸

𝑚𝜔2
 



Thus,  

𝐴2 =
2𝐸

𝑚𝜔2 →  𝜔2𝐴2 =
2𝐸

𝑚
          (22) 

Subbing equation (22) into equation (21) gives:  

𝑣(𝑡) =  √𝜔2𝐴2 − 𝜔2𝐴2 sin2(𝜔𝑡) = 𝜔√𝐴2 − 𝐴2 sin2(𝜔𝑡)   

Further noting that the second term under the square root is equivalent to position equation squared:  

 𝑣(𝑡) = 𝜔√𝐴2 − 𝑥(𝑡)2          (23) 

Thus, returning to our equation for probability, equation (17), we have that: 

𝑃(𝑥)𝑑𝑥 =
𝜔

2𝜋𝑣
𝑑𝑥 =  

1

2𝜋√𝐴2−𝑥(𝑡)2
𝑑𝑥   

Normalizing we have the condition that:  

∫ 𝑃(𝑥)𝑑𝑥 = 1
∞

−∞
  

Which gives the equation for the probability distribution of the classical harmonic oscillator: 

𝑃𝐶(𝑥) =
1

𝜋√𝐴2−𝑥2
 ,    𝑠. 𝑡.    𝐴2 =

2𝐸

𝑚𝜔2          (24) 

Determining Quantum Amplitude 
Effectively, we now have two equations representing the probability of finding the particle at a 

particular location “x” as described by both quantum mechanics, equation (14), and classical mechanics, 

equation (24). However, note that equation (14) depends on the quantum number “n” whereas 

equation (24) depends on our classical amplitude “A”. Referring back to our guiding question, we hope 

to explore the behaviour of the quantum harmonic oscillator at “large amplitudes”. As such, we need to 

define what is meant by “amplitude” at the quantum level so that we can reconcile the two 

distributions.  

As with many methods in this course, a proposition can be made using the classical case to see if it 

logically holds for the quantum case. In classical mechanics, the amplitude can be described by equation 

(22), which is simply a constant multiplied by the energy of the particle:  

𝐴2 =
2𝐸

𝑚𝜔2 = (𝑐𝑜𝑛𝑠𝑡. )𝐸  

As an extension, we make the proposition that the “quantum amplitude” may follow suit:  

𝐴𝑛
2 = (𝑐𝑜𝑛𝑠𝑡. )𝐸𝑛  

Notably, both the classical amplitude and our proposed quantum amplitude are solely dependant on 

energy. Regardless of whether the classical or quantum model is being considered, we know the energy 

of a particle to be:  

𝐸𝑛 = ℏ𝜔 (𝑛 +
1

2
)          (26) 



Further, we note that the energy, E, is dependant on a series of constants and n, the quantum number.  

Thus, we can narrow down the original proposition and suggest that the quantum number “n” is 

representative of our quantum “amplitude”. This allows us to express equation (24), the probability for 

the classical distribution, in terms of n.  

Subbing equation (22) into equation (24), we have:  

𝑃𝐶(𝑥) =
1

𝜋√
2𝐸

𝑚𝜔2−𝑥2
  

Subbing in equation (26):  

𝑃𝐶(𝑥) =
1

𝜋√2ℏ(𝑛+
1
2

)

𝑚𝜔
−𝑥2

          (27) 

Confirming the proposition for quantum amplitude 
The proposition that n is representative of the “quantum amplitude” can be confirmed by comparing the 

behaviour of the known classical amplitude to the proposed quantum amplitude. Classically, amplitude 

can be defined as the maximum displacement of an oscillation measured from the equilibrium point. 

Consequently, for very small amplitudes, we would have a high probability of finding the particle close 

to the equilibrium point. On the contrary, for large amplitudes, we see that there is a higher probability 

of finding the particle further from the equilibrium point. Relating this to a quantum system, for small n, 

we know that there is a higher probability of finding the particle close to the equilibrium point. This is 

shown by the position distribution for n = 0 in Figure 2 below. Similar to the classical system, as our 

proposed amplitude “n” increases, we see an increasing probability that the particle will be found 

further from the equilibrium point. Thus, graphically, both the classical amplitude and proposed 

quantum amplitude behave similarly, suggesting that n is a sound proposition for the quantum 

amplitude. 

 

Figure 2: Quantum probability distribution for the quantum amplitude of n = 0 and n = 10. Note that, similarly to the classical 
amplitude, as n increases, there is a greater probability of finding the particle further from the equilibrium point.  

  



Results and Discussion 
Using equations (14) and (27), plots for both distributions were generated for values from n = 0 to n = 

150. By superimposing the classical distribution on top of the quantum distributions, we can explore the 

qualitative behaviour of the distributions to inspect if the quantum distribution approaches the classical 

distribution at large amplitudes. Further, we can quantitatively define a standard error between the two 

distributions to better understand the significance of the results. 

Generating Plots 
First, a series of plots were generated for low values of n. For simplicity, all constant variables were 

taken to be 1. Figure 3 below shows the classical distribution, as modelled by equation (27) 

superimposed on the quantum distribution, modelled by equation (14), across varying values of n.  

 

Figure 3: Plots comparing the position probability distributions for the classical and quantum models of the harmonic oscillator. 
Note that at the lower values of n, ie) n =0,1, there is no obvious correspondence between the classical and quantum models, 
however, as n increases, a slight correspondence is observed. These plots were generated with python code, using the plotly 
express plotting library, attached in Appendix A.  

Note that, for lower values of n, there is no obvious correlation between the two distributions. In fact, 

for the n = 0 case, the distributions are predicting the exact opposite behaviour in that the quantum 

case suggests that the particle is most likely to be found at the point x = 0, while the classical case 

suggests that the particle is least likely to be found at the point x = 0. However, as n begins to increase, it 



becomes apparent that the quantum distribution begins to exhibit similarities to the classical 

distribution. Particularly, for the n = 10 case, it can be seen that the particle is now more likely to be 

found at points further from the equilibrium.  

To confirm this holds, plots were explored at larger values of n, as shown in Figure 3 below.  

 

Figure 4: Plots comparing the position probability distributions for the classical and quantum models of the harmonic oscillator. 
Note that as the value of n increases, we begin to see an evident correspondence between the distributions. In particular, we see 
that as n increases, the frequency of oscillations also increases. As well, notice that the probability of finding the particle outside 
the classically allowed region, that is beyond the point x = A, decreases as n increases.  



Notably, as n increases, we see a striking correspondence between the quantum distribution and the 

classical distribution. In particular, there are two key properties that can be witnessed. First, we see that 

as n increases, the frequency of oscillations in the quantum distribution also increases. At points where 

the quantum distribution intersects the classical distribution, we have that both distributions predict the 

exact same probability. Thus, more frequent oscillations suggest that there are more intersections 

between the two curves, and therefore more points in x at which the two distributions agree. Secondly, 

we see that as n increases, the probability of finding the particle outside the classically allowed region, 

that is beyond the point x = A, decreases.  

Extrapolating these findings to larger values of n, we assume that, in the limit that n approaches infinity, 

the frequency of oscillations becomes so great that the individual oscillations cannot be resolved from 

one another, thus, for all values of x, we would have both distributions predicting the same probability. 

As well, we assume that in this limit, the probability of finding the particle outside of the classically 

allowed region approaches zero. Therefore, to answer the guiding question of this paper with qualitative 

evidence, at large amplitudes, the behaviour of the position probability distribution as modelled by 

quantum mechanics approaches the behaviour of the classical model  

Error Calculations 
Notably, the distributions show a number of qualitative similarities. However, we can also quantify these 

similarities by looking at the percent error when comparing to how the quantum distribution models the 

classical distribution.  

For any arbitrary value “x”, the percent error can be calculated by:  

% 𝑒𝑟𝑟𝑜𝑟(𝑥) = |
𝑃𝑞(𝑥)−𝑃𝐶(𝑥)

𝑃𝑐(𝑥)
| ∗ 100%        (28) 

From equation (28), the error for each distinct value of x can be calculated. Summing all errors and 

dividing by the total number of records gives the average error for any particular value of n:  

𝐴𝑣𝑔 % 𝐸𝑟𝑟𝑜𝑟 =
∑ |

𝑃𝑞(𝑥)−𝑃𝐶(𝑥)

𝑃𝑐(𝑥)
|∗100%

𝑥0+𝐿
𝑥0

# 𝑜𝑓 𝑟𝑒𝑐𝑜𝑟𝑑𝑠
         (29) 

Figure 5 below shows the average error calculated for each value of n from 0 to 150.  



 

Figure 5: The average % error when comparing the position probability as predicted by quantum mechanics to classical 
mechanics. Note that as n increases, we see an exponential decrease in the average percent error. This suggests that as n 
increases, the error between the quantum probability and classical probability decreases, and thus, the quantum model more 
closely approaches the classical model. The code used to generate this plot can be found in Appendix A 

Notably, as n increases, we see an exponential decrease in the average percent error between the two 

distributions. For the n = 0 case, the average percent error was determined to be 21.21%. However, for 

the n = 150 case, the percent error drops to 1.74%. In plain English, this suggests that, for any arbitrary 

value of x, the quantum model will predict the probability within 21.21% of the classical model, on 

average. Whereas for the n = 150 case, this error reduces to 1.74%, almost 13 times more accuract. As 

this exponential trend continues, we assume that in the limit as n approaches infinity, the average 

percent error approaches zero. In the case where the percent error is equal to zero, we have that the 

quantum model and classical model would predict the exact same outcomes. Therefore, we can 

conclude that quantitatively, the quantum model approaches the classical model in the limit of large 

amplitudes.  

Justification of results  
Due to both the qualitative evidence shown by the visual similarities between the graphs, and the 

quantitative evidence shown by the reducing average error, it was concluded that the behaviour of the 

quantum model approaches the classical model in the limit of large amplitudes. However, as with any 

result in a scientific study, it is important to reflect on the logic of the outcome. Notably, Newton’s laws 



have proven to be extremely effective at modelling classical systems, and likewise, quantum mechanics 

is extremely effective at modelling the behaviour of quantum particles. As a result, we anticipate that, 

since both are proven at modelling the oscillator at their respective scales, there must be a 

correspondence between the two. Neil’s Bohr introduced the concept of the “correspondence principle” 

when analyzing the radiation of excited atoms as described by quantum mechanics compared to the 

radiation modelled by classical mechanics. The principle states that the behaviour of systems described 

by the theory of quantum mechanics reproduces classical physics in the limit of large quantum numbers 

[2]. As such, it is reassuring that we see the quantum behaviour approach the classical behaviour for 

large values of n. If this was not the case, it would likely suggest an inconsistency in either or both 

models.  

  



Conclusion 
With the support of both qualitative and quantitative results, it can be concluded that the behaviour of 

the quantum harmonic oscillator approaches the behaviour of the classical harmonic oscillator in the 

limit of large amplitudes. In particular, for values of the quantum number n from 0 to 150, plots were 

generated in order to explore the superimposition of the classical position distribution on the quantum 

position distribution. Three key outcomes were observed as n increased; firstly, it was noted that the 

frequency of oscillations in the quantum distribution increased, suggesting that the two distributions 

predicted the same results more frequently, secondly, the probability of finding a particle outside the 

classically allowed region decreased, and thirdly, the average percent error between distributions 

decreased exponentially. Taken together, these results suggest that when extrapolated to larger values 

of n, the quantum distribution would reproduce the model described by classical physics. Although this 

result is confined to the problem of the harmonic oscillator, it suggests the deeper implication that 

quantum physics can be reconciled with classical physics. This leads to the indication that quantum 

mechanics may be able to effectively model macroscopic systems, not only limited to the harmonic 

oscillator. The idea that macroscopic systems can potentially be described by a wavefunction and a set 

of probability distributions challenges classical physics and its deterministic nature.  

Although unsettling, this brings to light several areas for further investigation. With regards to the 

quantum harmonic oscillator, it would be particularly beneficial to expand this study to the three-

dimensional case and explore whether probability orbitals or atoms replicate classical physics in the limit 

of large quantum numbers. Additionally, the exploration of a rigorous mathematical proof exploring the 

behaviour of the probability functions in the limit that n approaches infinity would solidify the findings 

of this paper. Beyond the harmonic oscillator, investigating Bohr’s correspondence principle with 

regards to other problems in quantum mechanics would help to confirm these results. In doing so, one 

would effectively suggest that, quantum mechanics can take the place of classical mechanics in 

modelling macroscopic systems and further solidify quantum mechanics as a fundamental theory in 

physics.  
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Appendix A: Python Code for Figure Generation 
The following code was used to generate the data frames from which the distribution graphs were 

plotted from 

 

The following code was used to generate the distribution plots 

 



The following code was used to generate the error values for each n value.  

 


